EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution

نویسندگان

  • Liran Carmel
  • Yuri I. Wolf
  • Igor B. Rogozin
  • Eugene V. Koonin
چکیده

Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes) and events (gain and loss events along branches).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting‐free algorithm

Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolut...

متن کامل

The Naive Bayes Model, Maximum-Likelihood Estimation, and the EM Algorithm

This section describes a model for binary classification, Naive Bayes. Naive Bayes is a simple but important probabilistic model. It will be used as a running example in this note. In particular, we will first consider maximum-likelihood estimation in the case where the data is “fully observed”; we will then consider the expectation maximization (EM) algorithm for the case where the data is “pa...

متن کامل

Binary Tomography with Deblurring

We study two scenarios of limited-angle binary tomography with data distorted with an unknown convolution: Either the projection data are taken from a blurred object, or the projection data themselves are blurred. These scenarios are relevant in case of scattering and due to a finite resolution of the detectors. Assuming that the unknown blurring process is adequately modeled by an isotropic Ga...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

Image reconstruction from compressive samples via a max-product EM algorithm

We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing structured approximately sparse signals via belief propagation. The measurements follow an underdetermined linear model where the regression-coefficient vector is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian noise with an unknown variance. The signal is composed of largeand small...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010